
1

Auditing Content in Wagtail
Chuck Sebian-Lander and Will Barton (he/him)

We’re from the CFPB, a US government agency set up after the 2008 financial crisis to
implement and enforce federal consumer financial law and ensure markets are fair,
transparent, and competitive. Because of that, we have to give this disclaimer.

2

2

Disclaimer

This presentation is being made by a Consumer Financial Protection Bureau representative on behalf of the
Bureau. It does not constitute legal interpretation, guidance, or advice of the Consumer Financial Protection
Bureau. Any opinions or views stated by the presenter are the presenter’s own and may not represent the
Bureau’s views.

Just as a quick note, all of our code for our Django and Wagtail website is open source
on GitHub, as are a series of libraries we maintain. We also work entirely in the open,
in these repositories, for better and worse.

3

We’re open source and work in the open
https://github.com/cfpb/consumerfinance.gov/

https://github.com/cfpb/consumerfinance.gov/

For a liMle bit of history, we’ve been a user of Wagtail for a liMle over eight years now,

4

Eight+ years of Wagtail
Some history

We adopted Wagtail at version 1.1 in September of 2015. The site based on Wagtail
launched to the public in May 2016.

It had to accommodate data from a prior WordPress site that was hastily assembled
when the CFPB was established in 2012, and which grew unwieldy with a huge
number of custom fields.

5

Wagtail let us streamline that kind of page architecture for content managers, where
a limited number of page types can potentially meet many needs based on which
fields are selected in a StreamField. Content managers have options while also
limiting the number of unused fields they have to wade through in the admin.

At least, that was the theory.

6

With this powerful new CMS and its flexibility, we could do anything.

As designers, developers, content managers, etc, when the bureau idenWfied needs
the public had, we helped meet those needs in as many ways as we could.

7

Need a new block or five added to a StreamField? Done. (ADVANCE)

Need a new page type for this particular type of content? Done. (ADVANCE)

Need a new stream block that's nearly like another one but not quite for use on a
single page type? Done. (ADVANCE)

And if you saw Michael's talk yesterday morning, this probably sounds familiar!

8

Should we have used this power to add all of this? Yes. (ADVANCE)

I want to pause here, because I don't want this talk to devolve into condescension of
our past selves. I'm not here to tell you this was a mistake, to learn from it, and limit
what you implement.

Trust that the decisions you're making right now are the best ones you can make now.
Future-you might make a different decision based on extra context that now-you
doesn't have, and that's fine.

But that doesn’t mean we didn’t end up with a complex pile of content and code.

9

Yes.

10

Complexity doesn’t like to hide

Consumerfinance.gov is a very big website! (This doesn’t include several non-Wagtail
pages, or pages generated dynamically such as certain search result pages or pages
generated based on snippets)

11

11

Discrepancies arise with:
Nomenclature (“Newsroom page” vs. press release, director’s remarks, etc)
Blocks and layout (“well” vs. callout, table vs. info unit group)
Static vs. dynamic functionality (“related posts” blocks that are sometimes
static; filterable search results)

12

Many pages? Many page types

§ Over 30 page types
§ Frequently used standards (Blog, Newsroom)
§ Minor derivations of other page types
§ One-offs for special pages

§ Legacy content that pre-dates Wagtail
§ If you don’t know, you don’t know: institutional

knowledge and internal naming conventions
accumulated since 2016

§ Complexity driven in part by a separation
between “content managers” and “content
owners” (i.e. the writers are not in the CMS)

12

CF.gov covers a wide range of topics, but also covers many of the same topics with
various pieces of content intended for similar audiences

Not identical enough for a snippet, but too close not to want both updated in tandem

13

Redundant redundancies department:
More content means more of the same content

13

HUD approves housing counselor agencies, not the counselors themselves, but CF.gov
language – in blog posts, on consumer fact sheets, on random sidebar callouts –
referred consistently to “HUD-approved housing counselors”

The ask, from Bureau stakeholders: Find everywhere that says “HUD-approved
housing counselors” and change it to “HUD-approved housing counselor agency”

Needs to include variaWons in phrasing (e.g. “HUD-approved counselors”)

Needs to include snippets, plain text fields, rich text fields

Needs to cover every part of every page on the website: Sidebars, call-outs, search
descripWons, table cells, alternaWve text for images

14

For example: Finding and replacing content site-wide

Circa 2022: Update
language re: housing
counselors, agencies, and
the U.S. Department of
Housing and Urban
Development (HUD)

14

This is a daunting problem: you’ve got complexity built up over years and years, you
know it’s there, but how do you start interrogating it to know what patterns might
exist?

15

Where do you even start?

We identified a few specific problem areas we wanted to look at, and what we
needed an audit to tell us how to think about solving them. And that’s what the rest
of this will be about: how we did the audit, not CFPB-specific solutions to CFPB-
specific problems.

(ADVANCE)

We have a lot of page types, and as you can tell from Chuck’s screenshot a few slides
ago, this clutters up the “Create new page” listing for content managers.

(ADVANCE)

We have a lot of blocks available on those page types

(ADVANCE)

And, we have some places where raw HTML was entered into content fields because
those available blocks didn’t quite do what someone needed them to do

16

Identifying problem areas and what we need to audit

§ We have a lot of page types

16

§ How many pages do we have of each type?
§ How many pages are only ever children of a

specific page?

§ We have a lot of blocks

§ We have some places with raw HTML in
content fields

§ How many pages use each block?
§ How many blocks are available on a page

type but not used?

§ Uh…
§ We’ll come back to this one.

(ADVANCE) (ADVANCE)

16

So, page types. This is somewhat simple, in that Wagtail has a built in Page Types
Usage report.

This tells us exactly how many pages we have of each type.

(ADVANCE)

Note our “legacy newsroom” and “legacy blog” pages here — we’ll revisit these two
later

17

17

Another thing this report can show us is which pages are only ever used once.

One thing you’ll notice about these one-time use page types is that they are almost
all landing pages of some description, which suggests that, for example, our
Newsroom Page type could be limited to being a subpage type of Newsroom Landing
Page.

Generally too, page types are the easiest thing here to audit — they’re Django
models and we can easily construct querysets to look into them without a lot of
effort.

18

18

Ok, so that gives us some basic page type information we can act on, built-in, no
problem.

(ADVANCE)

That’s great. What’s next?

19

Identifying problem areas and what we need to audit

19

§ We have a lot of page types

§ We have a lot of blocks

When we start considering which blocks are used on those page types, and in which
stream fields… then we get into the weeds of Wagtail StreamFields.

Like I said earlier too, StreamFields were one of the major draws of Wagtail to us, in
the way they permit a lot of flexibility for page content without being a UX nightmare
in the admin. Let’s look into an example of how we’re using them.

20

This is a part of a page where we have help for renters who may be struggling to
make payments.

21

https://www.consumerfinance.gov/housing/housing-insecurity/help-for-renters/

https://www.consumerfinance.gov/housing/housing-insecurity/help-for-renters/

In the Wagtail admin, this is built using our Info Unit Group block, which contains Info
Units, which then have images, body text, links, and more as optional fields.

The Wagtail admin is great about displaying the hierarchical relationship between
these — the image upload and body clearly belongs to the Info Unit, which clearly
belongs to the Info Unit Group.

22

Let’s look at our Info Unit Group. It’s is a Struct Block that defines some specific fields,
including a list of Info Unit blocks.

23

The Info Unit block is also a struct block, and includes our image block, a Rich Text
Block, and a list of our hyperlinks. So, that’s the hierarchy in code, what does it look
like in the database?

24

Because Wagtail stream fields are implemented as JSON columns in the database,
when we look into the database at the content field, we see something like this in the
“content” column.

Given these data structures then, if we asked, how many pages are using our Image
Basic blocks, how would we answer this?

25

Our Info Unit struct block is not the only place the image block appears, it also
appears in our Featured Content block, for example. And many others, which are then
included in other blocks themselves. What if we want to count all of them?

26

So, both Django itself and PostgreSQL have some really nice JSON support built in. For
Django, if we know the JSON path, we can query into JSON fields directly. But the
problem with that is, stream fields don’t have a concrete schema. The JSON path
lookup is what we want to discover, but while we *could theoretically* know all
possible permutations of it, that won’t help us here.

27

…

PostgreSQL has some really very nice JSON support built in. We can build a temporary
table via lateral joins of all matching blocks within the JSON and query that… and
then maybe build a Django QuerySet around it.

28

Unfortunately, we couldn’t make this work the way we wanted to in a Django
QuerySet. We got stuck on this notion that we had to do this in the database,
because that’s the only way it could be reasonably performant, right?

Instead, we stepped back and started working with idea that maybe it’s okay if this
requires some time processing in Python. For a team of Python developers, this also
makes more sense, because it’ll be more immediately comprehensible by our
colleagues as well.

Fundamentally there are two things we want to know: what blocks are available on
each page type, and what blocks are in use?

29

☹

We ended up with two recursive functions to walk through first the Stream Block to
gather all possible paths to the blocks themselves on each Stream Field on our
models, and then to walk through Stream Values on page instances to find which of
those are being used.

And we use a dataclass to hold the results.

I know this is small on the screen, don’t worry about the following the code too
closely right now — this is all open source as a library with management commands
to run the audits.

30

So we’ve published a library with the code I showed above and a management
command to run it. It outputs CSV. It can be run on everything,

or you can filter for a specific page model and streamfield.

31

https://github.com/cfpb/wagtail-content-audit

./manage.py block_usage > block_usage_audit.csv

./manage.py block_usage --pagetype myapp.PageWithContent.content

https://github.com/cfpb/wagtail-content-audit

That filtering is possible because we’ve implemented this as a QuerySet-like object
using the https://github.com/wagtail/queryish library, which is awesome, and a
whole talk in itself. But that means you can also use it as such.

This also means it could be a Wagtail Report — this hasn’t happened yet though.

32

https://github.com/cfpb/wagtail-content-audit

./manage.py block_usage > block_usage_audit.csv

./manage.py block_usage --pagetype myapp.PageWithContent.content

from wagtail_content_audit.query import BlockUsageQuerySet

qs = BlockUsageQuerySet().filter(
 page_model="myapp.PageWithContent",
 field="content”
)

https://github.com/cfpb/wagtail-content-audit

We output the overall result of this to CSV, and do some filtering in Excel, and we can
see where this Image Basic block is used!

A couple of useful things to highlight here: it’s available in six places in the content
field of our “Learn Page”. But it’s not used at all in two of those. This gives us
something to investigate — is that block needed at all in those places? We don’t
know, but now we can check! And if we can remove them, then that simplifies the
options available on those blocks in the admin; we can stop presenting content
managers with options they don’t use.

The other thing to note here, the “Path” column, we’ve tried to make sure the path
that results here matches the path that Wagtail’s new streamfield migrations use, so
that hopefully it makes writing data migrations based on this that little bit more
straight forward.

33

(Pause)

Ok, so, how are we doing? This is exciting right?

We were certainly excited. We can pull our useful information about our deeply
nested blocks and potentially act on it to make our users lives easier. That’s what it’s
all about right?

CHUCK: This is also a great example of using a large, legacy database of content to
your advantage – the realities of usage trends are baked in at this point. It’s the most
organic user testing you can have. (More on that in a moment...)

34

😃

Ok, so we’ve got our page types audited and we have informaWon we can act on

(Advance)

we have our blocks audited and have informaWon we can act on.

(Advance)

And there was this liMle bullet right here. Yeah.

35

Identifying problem areas and what we need to audit

35

§ We have some places with raw HTML in
content fields

§ We have a lot of page types

§ We have a lot of blocks

SomeWmes our CMS doesn’t do what our users need it to.

36

Raw HTML

Maybe we don’t have a block for that, or maybe the block doesn’t have the right
options. And maybe we don’t have the capacity to add that option, it might be way
down the priority list.

What’s a user to do?

So, we were able to identify at a glance a few places where raw HTML was being
used.

37

(ADVANCE)

We have places where we include Wagtail’s RawHTMLBlock where we know we
might need to use raw HTML. This has also become a way for us to embed React
components, which is also probably not the best approach, and a whole other talk.

(ADVANCE)

We had raw HTML in some of our plain text fields… not great.

(ADVANCE)

And we had raw HTML in our rich text fields.

(ADVANCE)

(PAUSE)

But what are some examples? Ater all, we have users who clearly have needs the

38

Uses of raw HTML

§ Wagtail’s own RawHTMLBlock
§ Raw HTML in text fields
§ Raw HTML in rich text fields

CMS isn’t meeWng, so what are they?

38

”Legacy” content – imported into Wagtail as raw HTML when we migrated from
WordPress in 2016

Not the only example we had of using raw HTML in pages, but certainly the most
egregious—and there are nearly 1,500 of these on CF.gov!

We have asked, and have been told we cannot remove them, so: how do we deal
with this?

39

Pictured: a “content management system”

In our plaintext fields, we see examples like:

- Overriding the heading level and adding padding
- Adding strong and emphasis tags
- And… uh.

- Ok, so we have some user needs we’re not meeting

40

But I also said we have raw HTML in rich text fields right? What’s that look like?

So, we have users adding anchors. To rich text.

41

But wait, those of you who might be passingly familiar with Dratail and how rich text
works. How does that even work? It shouldn’t work. That’ll just get stored as HTML
enWWes!

In the database that field’s content looks like this

(Pause)

Right, so… this doesn’t answer the quesWon: how does that even work?

42

<p data-block-key="papkm"></p><hr/><h5 data-block-
key="c97tn">For consumers</h5><h2 data-block-
key="85m57">Find
help for your money situation</h2><p data-block-
key="cug70">The Consumer Financial Protection Bureau is a
U.S. government agency dedicated to making sure you are
treated fairly by banks, lenders, and other financial
institutions. Get started looking through tools and
information about products and services we
regulate.

</p>

Well, it works because we made a fateful decision to do this when rendering stream
child blocks.

This was when we were on Wagtail 1.2, in 2015, well before the Wagtail site launched
publicly.

This is well before a lot of Wagtail’s now-built-in rendering options for stream child
blocks, before `include_block`, etc.

This code existed in our render cycle until after we did the audit this presentation is
about earlier this year.

43

This is how HTML entities in our rich text field become actual HTML

44

This is how our CMS users could put any HTML they wanted into our rich text blocks
and it would render.

45

So… maybe the problem isn’t just span tags that are anchors? We can provide
anchors in the rich text editor, sure, but what else is in there? How do we even find
out what’s there, and in which rich text blocks, which can be in so many different
blocks on a page?

46

We’ve already solved the problem of walking through blocks, identifying their specific
path, etc. Maybe all we need to do is use that pattern, make it a queryish-queryset,
like we did before, and add a search inside the fields along the way.

47

Breathe.

We probably want to start by filtering the page query using Django’s `iregex` filter.
That way we’re only operating on a set of pages that has a match to our regular
expressions somewhere in the field we’re searching.

Then if the field is a streamfield, we walk through it like we did with the block usage
tool,

And again we’re using a dataclass to hold the results.

Of course, we’ll want a regular express we use to match HTML hiding in entities. It’s a
bit gnarly, but we’ll gloss over that.

48

What if we make a PageSearchQuerySet to do that. We’ll want to filter that.

Maybe by page model

And the field

And then we’d want to be able to give it a search string, maybe even a regular
expression, if we could have everything we ever wanted.

Maybe with a management command, for fun.

And, through a lot of iteraWon, that’s what we ended up with. This is also part of our
content audit library.

49

PageSearchQuerySet().filter(
 page_model="myapp.PageWithContent",
 field="content”,
 search=r"[tT]est”,
)

https://github.com/cfpb/wagtail-content-audit

./manage.py page_search --pagetype myapp.PageWithContent.content -s '[tT]est'

https://github.com/cfpb/wagtail-content-audit

And our results have one row per match, with similar fields to our block usage report
earlier, except we also get the exact location in a streamfield

So, in the circled example, this match is in the 7th stream child, which is an
expandable group, and the match is in the second item, and the first content
paragraph.

This way we can open the page in the admin and pinpoint more easily which field is
matching.

50

Aside from some one-offs and things we could manually remediate that didn’t need
to be there we found two really broad needs our rich text editor wasn’t meeWng:
anchors and inline SVGs.

51

Remediating

So, there’s a fantastic library, wagtail-draftail-anchors, that we used to add anchor
support in the rich text editor, and migrated our manual anchors to it.

We manually remediated a lot of other things we found, and we’ve isolated our SVG
problem while we work on it.

52

https://github.com/jacobtoppm/wagtail_draftail_anchors

https://github.com/jacobtoppm/wagtail_draftail_anchors

Coming back to these examples where we *just* have real HTML in a text field, we
can use the same page search tool to identify blocks that have any HTML in them
generally, filter out the raw HTML block and rich text blocks, which are the only ones
that should be storing HTML, and then identify patters in the rest of our blocks.

Then we can find a way to provide users with what they needed.

53

In some cases, we’ve just got a violaWon of our design system typography rules, and
we can get rid of it enWrely.

54

Some labels are being used as headings, so let’s give our content managers heading
fields.

55

And if icons are needed, let’s give them icons.

56

The key to improving such a complex system is for developers to collaborate with the
content managers – to add in features when the use of raw HTML suggests a clear
need, for example!

57

This lets you standardize and formalize paMerns of usage that will happen with or
without back-end support (but will be much hackier without!)

58

And now that we’ve added these and a few other features our content managers
needed,

59

Several data migrations and manual remediations later…

We’ve removed that unescaped.

60

And quickly fixed a few minor things we missed.

61

So… this was a daunting problem to consider initially: how do we even start auditing
content to see what patterns we have.

There’s this quote that is usually attributed to Desmond Tutu

62

How do you eat an Elephant?

Which… I mean this still works for this talk, how do you audit a massive pile of
content: don’t.

63

How do you eat an Elephant?
I’m a vegetarian, I don’t.

So, you do it with a little bit at a time, in small pieces, and thinking about our users
the whole way.

Hopefully creating some useful tools for ourselves and others while we’re at it.

64

REPEAT THE QUESTION!!!

65

Thank you!
Any questions?

